3,720 research outputs found

    Caustic Crossing Microlensing Event by Binary MACHOs and Time Scale Bias

    Get PDF
    Caustic crossing microlensing events provide us a unique opportunity to measure the relative proper motion of the lens to the source, and so those caused by binary MACHOs are of great importance for understanding the structure of the Galactic halo and the nature of MACHOs. The microlensing event 98-SMC-01, occurred in June 1998, is the first event for which the proper motion is ever measured through the caustic crossing, and this event may be caused by binary MACHOs as we argue in this Letter. Motivated by the possible existence of binary MACHOs, we have performed the Monte Carlo simulations of caustic crossing events by binary MACHOs and investigated the properties and detectability of the events. Our calculation shows that typical caustic crossing events have the interval between two caustic crossings (tcct_{\rm cc}) of about 5 days. We argue that with the current strategy of binary event search the proper motions of these typical events are not measurable because of the short time scale. Therefore the proper motion distribution measured from caustic crossing events suffers significantly from {`}time scale bias{'}, which is a bias toward finding long time scale events and hence slowly moving lenses. We predict there are two times more short time scale events (tcc10t_{\rm cc}\le 10 days) than long time scale events (tcc10t_{\rm cc}\ge 10 days), and propose an hourly monitoring observation instead of the nightly monitoring currently undertaken to detect caustic crossing events by binary MACHOs more efficiently.Comment: 8 pages and 3 figures, accepted for publication in ApJ Letter

    New effective interaction for pfpf-shell nuclei and its implications for the stability of the NN=ZZ=28 closed core

    Full text link
    The effective interaction GXPF1 for shell-model calculations in the full pfpf shell is tested in detail from various viewpoints such as binding energies, electro-magnetic moments and transitions, and excitation spectra. The semi-magic structure is successfully described for NN or Z=28 nuclei, 53^{53}Mn, 54^{54}Fe, 55^{55}Co and 56,57,58,59^{56,57,58,59}Ni, suggesting the existence of significant core-excitations in low-lying non-yrast states as well as in high-spin yrast states. The results of N=ZN=Z odd-odd nuclei, 54^{54}Co and 58^{58}Cu, also confirm the reliability of GXPF1 interaction in the isospin dependent properties. Studies of shape coexistence suggest an advantage of Monte Carlo Shell Model over conventional calculations in cases where full-space calculations still remain too large to be practical.Comment: 29pages, 26figures, to be published in Physical Review

    The Mass-to-Light Ratio of Binary Galaxies

    Get PDF
    We report on the mass-to-light ratio determination based on a newly selected binary galaxy sample, which includes a large number of pairs whose separations exceed a few hundred kpc. The probability distributions of the projected separation and the velocity difference have been calculated considering the contamination of optical pairs, and the mass-to-light ratio has been determined based on the maximum likelihood method. The best estimate of M/LM/L in the B band for 57 pairs is found to be 28 \sim 36 depending on the orbital parameters and the distribution of optical pairs (solar unit, H0=50H_0=50 km s1^{-1} Mpc1^{-1}). The best estimate of M/LM/L for 30 pure spiral pairs is found to be 12 \sim 16. These results are relatively smaller than those obtained in previous studies, but consistent with each other within the errors. Although the number of pairs with large separation is significantly increased compared to previous samples, M/LM/L does not show any tendency of increase, but found to be almost independent of the separation of pairs beyond 100 kpc. The constancy of M/LM/L beyond 100 kpc may indicate that the typical halo size of spiral galaxies is less than 100\sim 100 kpc.Comment: 18 pages + 8 figures, to appear in ApJ Vol. 516 (May 10

    Effective interaction for pf-shell nuclei

    Full text link
    An effective interaction is derived for use in the full pf basis. Starting from a realistic G-matrix interaction, 195 two-body matrix elements and 4 single-particle energies are determined by fitting to 699 energy data in the mass range 47 to 66. The derived interaction successfully describes various structures of pf-shell nuclei. As examples, systematics of the energies of the first 2+ states in the Ca, Ti, Cr, Fe, and Ni isotope chains and energy levels of 56,57,58Ni are presented. The appearance of a new magic number 34 is seen.Comment: 5 pages, 4 figures, to be published in Phys. Rev.

    MACHO Mass Determination Based on Space Telescope Observation

    Get PDF
    We investigate the possibility of lens mass determination for a caustic crossing microlensing event based on a space telescope observation. We demonstrate that the parallax due to the orbital motion of a space telescope causes a periodic fluctuation of the light curve, from which the lens distance can be derived. Since the proper motion of the lens relative to the source is also measurable for a caustic crossing event, one can find a full solution for microlensing properties of the event, including the lens mass. To determine the lens mass with sufficient accuracy, the light curve near the caustic crossing should be observed within uncertainty of \sim 1%. We argue that the Hubble Space Telescope observation of the caustic crossing supplied with ground-based observations of the full light curve will enable us to determine the mass of MACHOs, which is crucial for understanding the nature of MACHOs.Comment: 9 pages + 3 figures, accepted for publication in ApJ Letter

    Dp-branes, NS5-branes and U-duality from nonabelian (2,0) theory with Lie 3-algebra

    Full text link
    We derive the super Yang-Mills action of Dp-branes on a torus T^{p-4} from the nonabelian (2,0) theory with Lie 3-algebra. Our realization is based on Lie 3-algebra with pairs of Lorentzian metric generators. The resultant theory then has negative norm modes, but it results in a unitary theory by setting VEV's of these modes. This procedure corresponds to the torus compactification, therefore by taking a transformation which is equivalent to T-duality, the Dp-brane action is obtained. We also study type IIA/IIB NS5-brane and Kaluza-Klein monopole systems by taking other VEV assignments. Such various compactifications can be realized in the nonabelian (2,0) theory, since both longitudinal and transverse directions can be compactified, which is different from the BLG theory. We finally discuss U-duality among these branes, and show that most of the moduli parameters in U-duality group are recovered. Especially in D5-brane case, the whole U-duality relation is properly reproduced.Comment: 1+26 page

    A Note on Bimodal Accretion Disks

    Get PDF
    The existence of bimodal disks is investigated. Following a simple argument based on energetic considerations we show that stationary, bimodal accretion disk models in which a Shakura--Sunyaev disk (SSD) at large radii matches an advection dominated accretion flow (ADAF) at smaller radii are never possible using the standard slim disk approach, unless some extra energy flux is present. The same argument, however, predicts the possibility of a transition from an outer Shapiro--Lightman--Eardley (SLE) disk to an ADAF, and from a SLE disk to a SSD. Both types of solutions have been found.Comment: 9 pages including 9 figures, accepted for publication in The Astrophysical Journa

    Nuclear Shell Model by the Quantum Monte Carlo Diagonalization Method

    Full text link
    The feasibility of shell-model calculations is radically extended by the Quantum Monte Carlo Diagonalization method with various essential improvements. The major improvements are made in the sampling for the generation of shell-model basis vectors, and in the restoration of symmetries such as angular momentum and isospin. Consequently the level structure of low-lying states can be studied with realistic interactions. After testing this method on 24^{24}Mg, we present first results for energy levels and E2E2 properties of 64^{64}Ge, indicating its large and γ\gamma-soft deformation.Comment: 12 pages, RevTex, 2 figures, to be published in Physical Review Letter
    corecore